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Abstract. The zero-field splitting of the S state due to the virtual electron transfer processes
from the ligands into an unfilled shell (ln) of a paramagnetic ion has been calculated. A simple
analytical formula has been deduced for the spin-Hamiltonian parameters. The paramagnetic
centres: LiCaAlF6:Fe3+, LiSrAlF6:Fe3+, Al2O3:Fe3+, LiCaAlF6:Gd3+, LiSrAlF6:Gd3+,
Al 2O3:Gd3+ and YBa2Cu3O6+y :Gd3+ with y = 0.91, 0.95 have been considered as an example.
In all cases the calculated values of theD-parameter are in agreement with the electron
paramagnetic resonance data within an order of magnitude and in the sign as well.

1. Introduction

The question of the nature of the zero-field splitting of the S-state transition ions substituted
into a diamagnetic crystal lattice is still not completely understood. An overview of the early
investigations is given in [1]. Careful semiempirical analysis of the S-state splitting problem
was given by Newmanet al [2]. It is worth noting that exact numerical diagonalization of the
matrix energy including Coulomb, spin–spin interactions and crystalline field was performed
for the Gd3+ (4f7) ion in [3]. All possible terms of the 4f7 configuration were taken into
account. However the calculated splitting of8S states for the trigonal paramagnetic centre
SrF2:Gd3+ was only 35% of the experimental value. Actually, it was shown in [3] that the
one configuration approach is not sufficient to solve the S-state splitting problem.

Generally speaking, the several configuration approach, including the charge transfer
processes from the nearest ligands into unfilled 3d shell (the covalence effect) was suggested
already in [4]. Replacing 4f-electron states in Mn2+ (6S) states by the molecular orbitals,
the authors of [4] have examined the overlapping and covalence effects on the zero-field
splitting of Mn2+ (6S) states in the cubic crystals. This method is well known as a
semiempirical method of the molecular orbitals (the linear combinations of the atomic
orbitals) (MO-LCAO). For the problem we are interested in it is very exhausting and
uneffective. Moreover, the authors of [5] have pointed out many mistakes in the calculations
[4]. Thus, the question about influences of the covalence on the S-state splitting is still not
clear, as yet.
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Below to solve that problem we shall use the configuration interaction method (CI) [6].
It has already been pointed out (see, i.e. [7]) that this method is equivalent to MO-LCAO, but
is more applicable for many electronic problems, because it enables us to use the power of
the operator techniques in the atomic spectroscopy [8]. Plenty of the numerical MO-LCAO
calculations can be carried out in an analytical way and yield a simple formula, which can
be applied for crystals with different symmetry.

The paper is organized as follows. We calculated the aspherical part of the magnetic
dipole–dipole interaction between electrons of the central ion whose orbitals have been
changed from their free ion forms by surrounding ligands. Crudely speaking there are two
reasons for that. (1) There is effective repulsion between overlapping central ion and ligand
electrons due to the Pauli principle. (2) Electron transfer from the ligands into the unfilled
shell of paramagnetic ions (for short the covalence effect). Covalence parameters are larger
than the overlap integrals in the case under consideration. Thus we start from a description
of charge transfer contribution and at the end discuss corrections which appear due to the
nonorthogonality wave function of the central ion and ligand electrons. We do not consider
effects of nonorthogonality of ligand wave functions and hybridization between central ion
orbitals.

2. Effective spin–spin interaction operator for paramagnetic S-state centres

The influence of the covalent bonding effects on the spin–spin interaction of the electrons
in a paramagnetic ion can be taken into account in third order perturbation theory via the
effective Hamiltonian approach [7] as follows:

Veff = 1
2[[V1H2]H2] (1)

where

V1 = 1

2

∑
〈η1ξ2|g12|η′1ξ ′2〉a+η a+ξ aξ ′aη′ (2)

is an operator of spin–spin interaction expressed in a second quantization form [8]. In (2),
the Greek symbols denote a set of four quantum numbers. In particularη ≡ nηlηmηση, and

H2 =
∑

γηζ a
+
η cζ −

∑
γζηc

+
ζ aη (3)

describes the electron transfer from a ligand into the unfilled shell of the paramagnetic ion.
In the expression (3)γηζ = −tηζ /1ηζ are dimensionless hoping integrals, or covalence
parameters calculated per metal–ligand bond. Here and hereafter operatorsaη andcζ refer
to the electrons of the unfilled shell of the paramagnetic ion and to the ligands electron
respectively. Substituting (3) and (2) in (1), after the calculation of the commutator we
obtain

Veff = 1

2

∑
γαζ γζξ 〈η1ξ2|g12|η′1ξ ′2〉a+η aξ ′aη′a+α + HC (4)

whereHC denotes a Hermite conjugated term.
Now we are interested in the angular momentum representationVeff in (1). We expand

the spin–spin interaction operator

g12 = g2β2

[
(s1s2)

r3
12

− 3
(s1r12)× (s2r12)

r5
12

]
(5)
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into the series of the irreducible tensor operators [9]. Following the standard method [9, 10],
we obtain

g12 = −g
2β2

2
√

5

{∑
k

(−1)k

√
(2k + 5)!

(2k)!

[
rk2

rk+3
1

({c(k+2)
1 c(k)2 }(2)q · {s1s2}(2)q )

+ rk1

rk+3
2

({c(k)1 c
(k+2)
2 }(2)q · {s1s2}(2)q )

]}
. (6)

Here the first and the second term have been derived under assumptionsr2 < r1 andr1 < r2,
respectively. The tensor products of the spin operators are defined by the usual rules [9, 10]:

{s(1)1 s
(1)
2 }(2)q =

∑
π1π2

(−1)q
√

5

(
1 1 2
π1 π2 q

)
s(1)π1
s(2)π2

{c(k+2)
1 c(k)2 }(2)q =

∑
q1q2

(−1)q
√

5

(
k + 2 k 2
q1 q2 −q

)
c(k+2)
q1

c(k)q2
.

(7)

Using the expressions (2)–(7), the effective HamiltonianVeff after integrating over the radial
variables and applying Wigner–Eckart theorem can be rewritten as follows:

Veff = −g
2

2

∑
γαζ γζξ

{∑
k

(−1)k

√
(2k + 5)!

(2k)!
M(k)(−1)2q

×
√

5

(
1 1 2
π1 π2 −q

)
〈sηση|s(1)π1

|sη′ση′ 〉〈sξσξ |s(2)π2
|sξ ′σξ ′ 〉

×
[(

k + 2 k 2
q1 q2 −q

)
〈lηmlη |c(k+2)

q1
|lη′mlη′ 〉〈lξmlξ |c(2)q2

|lξ ′mlξ ′ 〉

+
(
k k + 2 2
q1 q2 −q

)
〈lηmlηi |c(k)q1

|lη′mη′ 〉〈lξmlξ |c(k+2)
q2
|lξ ′mlξ ′ 〉

]}
×a+η aξ ′aη′a+α + HC. (8)

The reducible matrix elements of the one-electron operators are defined by the usual relations
[9]:

(l||ck||l) = (−1)l
√
(2l + 1)(2l′ + 1)

(
l k l′

0 0 0

)
(s||s||s) =

√
s(s + 1)(2s + 1) (9)

and the radial integrals:

M(k) = β2
∫ ∫

rk<

rk+3
>

R2
nl(r1)R

2
nl(r

2)r2
1r

2
2 dr1 dr2 (10)

are known in the literature as Marvin integrals [11] andRnl are the Hartree–Fock wave
functions of electrons in the unfilled shell of the paramagnetic ion.

Expression (8) contains two terms. Let us consider the second one which contains the
matrix element〈lξmlξ |c(k+2)

q2
|lξ ′mlξ ′ 〉. Using the formula from [8]

a+η aη′ =
∑
πq
χ1k

(−1)s−ση
√
(2χ1+ 1)

(
s χ1 s

−ση π1 ση′

)
(−1)l−mη

√
(2k1+ 1)

×
(

l k1 l

−mη q1 mη′

)
Wχ1k1
π1q1

(11)
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where Wχ1k1
π1q1 is a double irreducible tensor operator [8], then using the orthogonality of

the 3j -symbols and finally taking into consideration the selection rules for the covalence
parameters [7]γηζ = γnξ lξmξ δσησξ δmηmξ we obtain

V2eff = −g
2
√

5

2

∑
γmξ γmα

∑
k

(−1)k

√
(2k + 5)!

(2k)!
M(k)

(
k k + 2 2
q1 q2 −q

)
×
(

lξ k + 2 lξ ′

−mξ q2 mξ ′

)(
1 1 2
π1 π2 −q

)(
lξ k2 lξ ′

−mα q ′2 mξ ′

)
×δk1kδq1q

′
1
δ1χ1δπ1π

′
1
δ1χ2δπ2π

′
2

(2k + 1)× 3× 3
(l||c(k+2)||l)(l||c(k)||l)(s||s||s)2

×
√

2χ1+ 1
√

2k + 1
√

2χ2+ 1
√

2k2+ 1W1k2

π2q
′
2
W1k
π1q

′
1
+ HC. (12)

In a similar manner the first part of the expression (8) can be simplified. Using the
Wigner–Eckart theorem it can be proved thatVeff = 0 for the pure S states.

The expression (12) applies to the one metal ion ligand pair with the localz-axis along
the bond of the pair. Before transformation of (12) to the crystallographic coordinate system
it is useful to make some manipulations in it. Firstly, using the relations between the 6j -
symbols and 3j -symbols, we can perform the following recoupling of the momenta∑
mζmζ ′

(
l k + 2 l

−mζ q2 mζ ′

)(
k2 l l

q ′2 −mζ mζ ′

)

=
∑
mζ

(−1)l−mζ−q2+k2+k(2K + 1)

{
l k + 2 l

k2 l K

}
×
(
k2 K k + 2
−q ′2 0 q2

)(
l l K

−mζ mζ 0

)
. (13)

Secondly, to define the quantities which are invariants with respect to a rotation around the
bond axis:

J
(K)
l (Rab) = (l||ck||l)

∑
mζ

(−1)l−mζ (2K + 1)

(
l l K

−mζ mζ 0

)
γ 2
mζ
. (14)

Then the expression (12) forV2eff takes the form

V2eff = −g
2
√

5

6

∑
k

(−1)k

√
(2k + 5)!

(2k)!

√
2k2+ 1

2k + 1
M(k)(−1)−q2+k2+kJ (K)l

×
(
k k + 2 2
q1 q2 −q

){
l k + 2 l

k2 l K

}(
1 1 2
π1 π2 −q

)
×
(
k2 l k + 2
−q ′2 0 q2

)
(l||c(k+2)||l)(s||s||s)2W1k2

π2q
′
2
W1k
π1q

′
1
+ HC. (15)

For the pure S states the expression (15) simplifies as follows:

V2eff = −g
2
√

5

6

√
5!
∑
π1π2

J
(2)
1 M(0)

(
0 2 2
0 0 0

)2{
l 2 l

0 l 2

}
×
(

1 1 2
π1 π2 0

)
(l||c(0)||l)(s||s||s)2W10

π20W10
π10+ HC. (16)
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Using the relationW10
π0 = (2/(2l+ 1))1/2S(1)π [8] and the analytical expressions for 3j - and

6j -symbols we obtain the following form of the effective Hamiltonian (8):

Veff = −g
2
√

6

5
J
(2)
l M(0) 1

(2l + 1)2
{S(1)S(1)}(2)0 + HC. (17)

The rotations of the coordinate system are done using the usual transformation rules for
irreducible tensor operators [10]

{S(1)S(1)}(2)0 = ({S(1)S(1)}(2)C(2)(θbϕb)) (18)

whereC(2)(θbϕb) is a spherical tensor of Euler angles, that defines the orientation of the
metal–ligand pair with respect to the crystallographic coordinate system. Finally, taking
into account all possible surrounding ligands by the simple summation over the indexb we
obtain

Veff = −g
2
√

6

5
M0 2

(2l + 1)2
[{S(1)S(1)}(2)0 · C

(2)
0 (θbϕb)]J

(2)
l (Rab). (19)

Operator (19) can be easily changed into the spin-Hamiltonian form, that is usually applied
for the analysis of the electron paramagnetic resonance (EPR) spectra:

Heff = D[S2
z − 1

3S(S + 1)] + E(S2
x − S2

y )+ · · · . (20)

In particular, for theD-parameter we find the following expression from (19):

Dl
cov = −

6

5

g2M(0)

(2l + 1)

∑
b

J
(2)
l (Rab)C

(2)
0 (θb). (21)

The formula (21) allows us to calculate the covalence contribution to the parameterD for
the different types of paramagnetic centre, e.g., cubic, octahedral, tetrahedral and others.
The formula for theElcov-parameter can be written in a similar way.

3. The general features ofDcov and numerical calculations

For the 3dn shell of an iron group the expression (21) yields:

Dd
cov = −

6

25
g2M0

∑
b

C(2)
0 (θb)J

(2)
d (Rab). (22)

In the case of 4fn-shell rare-earth ions we find from (21):

Dl
cov = −

6

35
g2M0

∑
b

J
(2)
1 (Rab)C

(2)
0 (θbϕb). (23)

Using the formula (14),J (2)(R) can be written as follows:

J
(2)
d = 10

7 (γ
2
dσ + γ 2

dπ + γ 2
ds) J

(2)
f = 2

3(2γ
2
f σ + 3γ 2

fπ + 2γ 2
f s). (24)

As can be seen from (24) the valuesJ (2)d and J (2)f are positive. Thus, the sign of the

parameterD is mainly defined by
∑

b C(2)
0 (θb) = 1

2

∑
b(3 cos2 θb − 1), the structural factor.

The summation is taken over the nearest surrounding ligands only, and angleθb is measured
from thez-axis of the paramagnetic centre. It is easy now to deduce the following rules; for
the compressed octahedral surroundingsD > 0, while for compressed cubic (eightfold) and
tetrahedral (fourfold) surroundingsD < 0. These simple rules agree with semiempirical
conclusions, that were drawn on the basic of the EPR data in [1]. The relation betweenDcov

and theB0
2 crystal field parameter can be easily obtained from the expressions (21)–(23).
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The comparison of (21) with the expression of the crystal field parameter [12, 13]
indicates that the signs ofD andB0

2 (here as in Newman’s paper [2] we include only the
contributions toB0

2 from the nearest ligands) are opposite. Hence, within the framework of
the covalent model, this conclusion is really correct for all S-state ions.

Let us touch now briefly on the overlapping effect, because the electron states at the
metal ion and ligands are not orthogonal to each other. Mathematically this problem has
common features with the Slater reduction parameter problem, which was discussed in
[14]. In the same manner as in [14], taking into account in first and second order of
perturbation theory the overlapping effects of the unfilled electronic shell of the paramagnetic
ion with the ligand shells, one can deduce thatγ 2

mζ
in (14) is just changed by the expression

γ 2
mζ
+2xsmζ γmζ −s2

mζ
, wheresmζ is an overlap integral andx is an approximation parameter,

which is about 0.5.
For the more accurate comparison with the experimental data [15–21] let us consider

some examples. In table 1 we collected the x-ray structure analysis data ofθ -angles for
different single crystals. The overlap integrals were calculated using the Hartree–Fock
function [22]. The covalence parameters for some fluorides are known from the analysis of
the superhyperfine interaction [23]. Small corrections of these values have been performed
under the assumption that the covalence parameters are changed versusRab distance like
overlap integrals. The values ofγ calculated in a such way are given in table 2. In table 3
we show the results of the calculation of theDcov-parameter for Fe3+ and Gd3+ ions in
single crystals LiCaAlF6, LiSrAlF6 and Al2O3, as well as for the ion Gd3+ in YBa2Cu3O6+y
for y = 0.91 and 0.95, together with the experimental data forD in these compounds. The
calculatedDcov coincides in order of magnitude as well as in the signs with the experimental
values ofD.

Table 1. Values of the anglesθb taken from the structural data.

Paramagnetic ion Compounds θb (
◦)

Fe3+ LiSrAlF6 53.28 [15]
LiCaAlF6 54.9 [16]
Al 2O3 24.75 [17]

39.14 [17]
Gd3+ LiSrAlF6 49.7 [18]

LiCaAlF6 52.04 [18]
Al 2O3 19.82 [19]

33.28 [19]
YBa2Cu3O6.91 57.15 [20, 21]

63.28 [20, 21]
YBa2Cu3O6.93 56.72 [20, 21]

63.14 [20, 21]

4. Discussion

In summary, in the present paper we have calculated the influence of the covalence (charge
transfer ligand–metal processes) on the zero-field splitting of the S-state phenomena. We
have obtained the simple analytical formula for the spin-Hamiltonian parameters of the
unfilled 4f and 3d shells, which can be applied for the crystals with a different symmetry.
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Table 2. Overlap integrals and covalence parameters. Metal–ligand distanceR.

Al 2O3 YBa2Cu3O6.91 YBa2Cu3O6.95

LiCaAlF6 LiSrAlF6

Ion R = 1.8 Å R = 1.86 Å R = 1.845 Å R = 1.988 Å R = 2.375 Å R = 2.403 Å R = 2.381 Å R.2= 406 Å

Fe3+ S3d,2s 0.064 0.056 0.056 0.045 — — — —
γ3d,2s 0.034 0.032 0.032 0.026 — — — —
S3d2p,σ 0.076 0.070 0.066 0.056 — — — —
γ3d2p,σ 0.213 0.198 0.209 0.150 — — — —
S3d2p,π 0.049 0.043 0.047 0.036 — — — —
γ3d2p,π 0.153 0.142 0.159 0.100 — — — —

R = 2.273 Å R = 2.34 Å R = 2.457 Å R = 2.6Å R = 2.375 Å R = 2.403 Å R = 2.384 Å R = 2.407 Å

Gd3+ S4f,2s 0.013 0.011 0.0095 0.0073 0.0109 0.0104 0.0107 0.0103
γ4f,2s 0.017 0.014 0.013 0.009 0.013 0.011 0.013 0.011
S4f 2p,σ 0.018 0.016 0.013 0.010 0.015 0.014 0.015 0.014
γ4f 2p,σ 0.099 0.096 0.093 0.070 0.089 0.087 0.088 0.087
S4f 2p,π 0.012 0.010 0.0082 0.0062 0.0096 0.0092 0.0095 0.0091
γ4f 2p,π 0.072 0.071 0.069 0.052 0.070 0.069 0.070 0.069
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Table 3. Values of parameterD.

D (MHz)

Paramagnetic ions Compounds Experimental Calculated

Fe3+ LiSrAlF6 −908 [15] −839
LiCaAlF6 112 [16] 109
Al 2O3 3839 [17] 1718

Gd3+ LiSrAlF6 −1210 [18] −1000
LiCaAlF6 −653 [18] −561
Al 2O3 2365 [19] 1177
YBa2Cu3O6.91 −1270 [20, 21] −1184
YBa2Cu3O6.95 −1272 [20, 21] −1279

(a) The sign of the parameterD is defined by the structural factor
∑

b C(n)

0 (θbϕb).
(b) Consequently,D > 0 for compressed octahedral surroundings; for compressed

cubic and tetrahedral surroundingsD < 0. These simple rules agree with the semiempirical
conclusions [4].

(c) In the frame of our covalent model, the signs of the crystal field parameterB0
2 (from

the nearest neighbour ligands) and of the spin-Hamiltonian parameterD are opposite.
(d) We have calculated the parametersDcov for Fe3+ and Gd3+ ions in LiCaAlF6,

LiSrAlF6 and Al2O3 single crystals, as well as for the ion Gd3+ in YBa2Cu3O6+y for
y = 0.91, 0.95. In all cases the calculated value ofD agrees in order of magnitude and
signs well with EPR data. Thus, we arrive at the conclusion: the charge transfer processes
contribution to the zero-field splitting of the S-state transition ions is very important at least
for the crystals that we have examined in the present paper.
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